

Improving Performance with the MySQL Performance Schema

Jesper Wisborg Krogh
Principal Technical Support Engineer, MySQL

Background Information

To login to the virtual machine:
Username: mysqlconnect
Password: mysqlconnect
Root password: Oracle123

Starting and stopping MySQL:
There are two MySQL instances installed in a master-slave configuration. Both are version 5.6.6
and can be started and stopped using mysqld_multi. The master has option group number 0 and
the slave has option group number 1.

To start/restart/stop both master and slave:

To start/restart/stop just the master:

To start/restart/stop just the slave:

To log into the master:

To log into the slave:

shell# service mysqld start|restart|stop

shell# service mysqld start|restart|stop 0

shell# service mysqld start|restart|stop 1

shell# mysql

shell# mysql --socket=/var/lib/mysql_slave/mysql.sock

The following databases are installed:

• employees: approximately 160M data in 4 million rows.
https://dev.mysql.com/doc/employee/en/index.html

• sakila: a medium sized sample database with views, stored programs, etc.
https://dev.mysql.com/doc/sakila/en/index.html

• world: the standard World sample database.
https://dev.mysql.com/doc/index-other.html

• ps_helper: Mark Leith’s ps_helper views and procedures for the Performance Schema.
http://www.markleith.co.uk/ps_helper/

• ps_tools: Similar to ps_helper (will be loaded during this session). A mix of tools created by
Mark Leith and Jesper Krogh.

• mysqlconnect: an empty database.

Running the Tests
The tests in this hands-on lab will be run as the root user – both with respect to the operating
system and to MySQL.

You can change to become the root user with the following command in the Linux shell:

shell$ su -l

https://dev.mysql.com/doc/employee/en/index.html
http://www.markleith.co.uk/ps_helper/
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/sakila/en/index.html

Tour of the MySQL Performance Schema

Configuration
We will start out taking a look at how MySQL has been configured with respect to the MySQL
Performance Schema.
Starting from MySQL 5.6.6 the Performance Schema is enabled by default, so it is no longer to
explicitly enabling it.
However not everything is enabled by default. You have instruments which are the things you can
measure, and consumers which are those that use the measurements. Not all instruments and
consumers are enabled out of the box, so to ensure we have everything enabled, a few options
have been added to the MySQL configuration file. To look at these changes:

The first setting performance_schema_instrument = '%=on' switched on all instruments
(% is a wildcard that matches all instruments).
For the consumers it is necessary to enable each explicitly. This is done by pre-pending the name
of the consumer with performance_schema_consumer_, for example to enable the
statements_digest consumer, use the setting and set it to ON.

shell# cat /etc/my.cnf
…
performance_schema_instrument = '%=on'
performance_schema_consumer_events_stages_current = ON
performance_schema_consumer_events_stages_history = ON
performance_schema_consumer_events_stages_history_long = ON
performance_schema_consumer_events_statements_current = ON
performance_schema_consumer_events_statements_history = ON
performance_schema_consumer_events_statements_history_long = ON
performance_schema_consumer_events_waits_current = ON
performance_schema_consumer_events_waits_history = ON
performance_schema_consumer_events_waits_history_long = ON
performance_schema_consumer_global_instrumentation = ON
performance_schema_consumer_thread_instrumentation = ON
performance_schema_consumer_statements_digest = ON
…

Start MySQL

1. Stop MySQL

2. Update the MySQL configuration file
Change innodb_buffer_pool_size and innodb_log_file_size by opening /etc/my.cnf
and in the [mysqld0] group edit, so:

3. Move the existing log files out of the way

4. Start MySQL

5. Load Tools
Load some extra Performance Schema tools into MySQL – these are stored in the ps_tools
database and are similar to ps_helper.

6. Connect to the master:

shell# mysql performance_schema

shell# mysql < /tmp/hol/ps_tools_56.sql
shell# mysql --socket=/var/lib/mysql_slave/mysql.sock < /tmp/hol/ps_tools_56.sql

shell# mysqladmin shutdown
shell# mysqladmin --socket=/var/lib/mysql_slave/mysql.sock shutdown

innodb_buffer_pool_size = 100M
innodb_log_file_size = 6M

shell# mv /var/lib/mysql/ib_log* /tmp

shell# service mysqld_multi start

Performance Schema Variables:
In addition to the options for which instruments and consumers are enabled at start up, there are
a number of variables:

Query 1

These defines the size of the various Performance Schema tables. Several of the values are
calculated automatically based on the other settings such as max_connections.

As all the Performance Schema data is in-memory changing the size of the tables, affects the
memory usage. The memory usage of the Performance Schema can be checked with SHOW
ENGINE PERFORMANCE_SCHEMA STATUS:

Query 2

The last row with Name = performance_schema.memory has the total memory usage for the
Performance Schema.

mysql> SHOW GLOBAL VARIABLES LIKE 'performance_schema%';
+--+-------+
| Variable_name | Value |
+--+-------+
performance_schema	ON
performance_schema_accounts_size	100
performance_schema_digests_size	5000
…	
performance_schema_setup_actors_size	100
performance_schema_setup_objects_size	100
performance_schema_users_size	100
+--+-------+
31 rows in set (0.03 sec)

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS;
+--------------------+---+----------+
| Type | Name | Status |
+--------------------+---+----------+
| performance_schema | events_waits_current.row_size | 184 |
| performance_schema | events_waits_current.row_count | 2268 |
…
performance_schema	(user_hash).count	2
performance_schema	(user_hash).size	100
performance_schema	performance_schema.memory	77388712
+--------------------+---+----------+
154 rows in set (0.01 sec)

Setup Tables
There are five setup tables for the Performance Schema:

Query 3

The setup tables include the current settings and allow for dynamically changes of the settings at
runtime.
Changes to the setup tables in general takes effect immediately. One exception is changes to
setup_actors which will only affect new connections.

Note: while it is possible to configure most of the Performance Schema settings dynamically,
these changes are not persistent when MySQL restarts.

setup_actors
The setup_actors table controls which user accounts are instrumented by default (see also the
threads table). The setup_actors table has the following content per default:

Query 4

The HOST and USER fields correspond to the same fields in mysql.user. The ROLE field is
currently not used.

mysql> SHOW TABLES LIKE 'setup_%';
+---+
| Tables_in_performance_schema (setup_%) |
+---+
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_timers |
+---+
5 rows in set (0.02 sec)

mysql> SELECT * FROM setup_actors;
+------+------+------+
| HOST | USER | ROLE |
+------+------+------+
| % | % | % |
+------+------+------+
1 row in set (0.00 sec)

The rule is that is any row in setup_actors matches the user account, the connection will be
instrumented.

setup_objects
The table setup_objects define which database objects will be instrumented. Currently this
can only be configured for tables, however wildcards are allowed.
The default content of the table is:

Query 5

For setup_objects, the most specific match is used. The difference between ENABLED and
TIMED is whether when a table is instrumented the events are only counted or also timed.

To demonstrate the use of the setup_objects table, consider the following example:

Query 6a

This resets the table_io_waits_summary_by_table table.

Query 6b

So the table does not have any row for the world.Country table at this point – just as would be
expected just after truncating a table.

mysql> SELECT * FROM setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+
4 rows in set (0.00 sec)

mysql> TRUNCATE table_io_waits_summary_by_table;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT OBJECT_SCHEMA, OBJECT_NAME, COUNT_STAR, SUM_TIMER_WAIT FROM
table_io_waits_summary_by_table WHERE OBJECT_SCHEMA = 'world' AND
OBJECT_NAME = 'Country';
Empty set (0.00 sec)

Query 6c

After executing a query using the world.Country table, what does
table_io_waits_summary_by_table now show?

Query 6d

So there are 240 events for the world.Country table now and a total of 226789351616 pico
seconds (10-12 seconds) has been spent using the table.
Now try the same again, but with a rule in the setup_objects table that turns off timing of the
events on the world.Country table.

Query 6e

Query 6f

mysql> SELECT COUNT(*) FROM world.Country;
+----------+
| COUNT(*) |
+----------+
| 239 |
+----------+
1 row in set (0.05 sec)

mysql> SELECT OBJECT_SCHEMA, OBJECT_NAME, COUNT_STAR, SUM_TIMER_WAIT FROM
table_io_waits_summary_by_table WHERE OBJECT_SCHEMA = 'world' AND
OBJECT_NAME = 'Country';
+---------------+-------------+------------+----------------+
| OBJECT_SCHEMA | OBJECT_NAME | COUNT_STAR | SUM_TIMER_WAIT |
+---------------+-------------+------------+----------------+
| world | Country | 240 | 22678351616 |
+---------------+-------------+------------+----------------+
1 row in set (0.00 sec)

mysql> INSERT INTO setup_objects VALUES ('TABLE', 'world', 'Country', 'YES',
'NO');
Query OK, 1 row affected (0.01 sec)

mysql> TRUNCATE table_io_waits_summary_by_table;
Query OK, 0 rows affected (0.00 sec)

Query 6g

Now what is that? We just truncated the table_io_waits_summary_by_table table, but
there is still content in it! For summary rules, TRUNCATE does in general not delete any of the
existing rows, instead the counters are set to 0. This is what also happened in this case.

Query 6h

Query 6i

Here the effect of setting TIMED = 'NO' is that the timer fields (here SUM_TIMER_WAIT) is not
updated, but we can still see how many times the world.Country has been accessed.

mysql> SELECT OBJECT_SCHEMA, OBJECT_NAME, COUNT_STAR, SUM_TIMER_WAIT FROM
table_io_waits_summary_by_table WHERE OBJECT_SCHEMA = 'world' AND
OBJECT_NAME = 'Country';
+---------------+-------------+------------+----------------+
| OBJECT_SCHEMA | OBJECT_NAME | COUNT_STAR | SUM_TIMER_WAIT |
+---------------+-------------+------------+----------------+
| world | Country | 0 | 0 |
+---------------+-------------+------------+----------------+
1 row in set (0.00 sec)

mysql> SELECT COUNT(*) FROM world.Country;
+----------+
| COUNT(*) |
+----------+
| 239 |
+----------+
1 row in set (0.00 sec)

mysql> SELECT OBJECT_SCHEMA, OBJECT_NAME, COUNT_STAR, SUM_TIMER_WAIT FROM
table_io_waits_summary_by_table WHERE OBJECT_SCHEMA = 'world' AND
OBJECT_NAME = 'Country';
+---------------+-------------+------------+----------------+
| OBJECT_SCHEMA | OBJECT_NAME | COUNT_STAR | SUM_TIMER_WAIT |
+---------------+-------------+------------+----------------+
| world | Country | 240 | 0 |
+---------------+-------------+------------+----------------+
1 row in set (0.00 sec)

Finally we will change back so world.Country is instrumented fully again.

Query 6j

setup_timers
The setup_timers table defines which timer is used for the each of the instrument types.

Query 7a

The TIMER_NAME can be set to any of the values available from performance_timer table:

Query 7b

From the performance_timer table, you can also see the timer frequency, resolution, and
overhead (in number of cycles) using that particular timer.

mysql> DELETE FROM setup_objects WHERE OBJECT_SCHEMA = 'world' AND
OBJECT_NAME = 'Country';
Query OK, 1 row affected (0.02 sec)

mysql> SELECT * FROM performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	1454950248	1	42
NANOSECOND	1000000000	1	91
MICROSECOND	1000000	1	105
MILLISECOND	1142	1	119
TICK	112	1	882
+-------------+-----------------+------------------+----------------+
5 rows in set (0.01 sec)

mysql> SELECT * FROM setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
+-----------+-------------+
4 rows in set (0.00 sec)

setup_instruments
The setup_instruments contain one row per instrumentation point in the source code. These
are the events that can be collected. It is possible to specify both whether an instrument is
producing events and if so whether it is timed; this is very similar to the setup_objects table.

Query 8

The name is constructed by components which form a hierarchy. The number of components
depends on the name. The components are separated by /. When ENABLED is YES, the
instrument produces events. TIMED is whether the events are times or just counted.

The default for which instruments are enabled can be set in the MySQL configuration file using
the performance_schema_instrument option.

mysql> SELECT * FROM setup_instruments LIMIT 1;
+---------------------------------+---------+-------+
| NAME | ENABLED | TIMED |
+---------------------------------+---------+-------+
| wait/synch/mutex/sql/PAGE::lock | YES | YES |
+---------------------------------+---------+-------+
1 row in set (0.00 sec)

setup_consumers
The last setup table is setup_consumers which lists the consumers of events from the instruments
and allows you to specify whether it is enabled or not.

Query 9

The consumers also form a hierarchy:

mysql> SELECT * FROM setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	YES
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	YES
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+--------------------------------+---------+
12 rows in set (0.00 sec)

For a consumer to collect events, not only does it have to be enabled, all consumers above it in
the hierarchy must be enabled as well.

Instance Tables
The instance tables include information about the objects being instrumented. They provide event
names and explanatory notes or status information. The relation to the setup tables is that the
instance table has a NAME or EVENT_NAME column that corresponds to the NAME column in the
setup_instruments table.

Query 10

Event Tables
The event tables are the main entry point for looking at the collected data. There are three groups
of event tables depending on the type of event:

• Stages: The same stages as in the State column of SHOW PROCESSLIST, for example
Sending data.

• Statements: The SQL statements that have been run on the server.

• Waits: Where the server is spending time – the instrumentations points from
setup_instruments.

mysql> SHOW TABLES LIKE '%_instances';
+---+
| Tables_in_performance_schema (%_instances) |
+---+
| cond_instances |
| file_instances |
| mutex_instances |
| rwlock_instances |
| socket_instances |
+---+
5 rows in set (0.01 sec)

For each event type there are three tables with the actual data collected:

• *_current: the last event for each thread. Note in the case of wait events, some events are
molecular events, so there can be two events for one thread.

• *_history: the last 10 (by default) events for each thread. The number of events per thread
can be configured using the performance_schema_events_*_history_size
options.

• *_history_long: the last 1000 (by default) events. The size of the table can be configured
with the performance_schema_events_*_history_long_size options.

Additionally there are a number of summary tables for each event type. The naming convention
for the event summary tables is that the table name has two or more parts:

• event_*_summary: specifies the event type and it is a summary table.

• One or more _by_<field>: specifies a field the summary is grouped by.

An example is events_stages_summary_by_account_by_event_name: a summary of
stages grouped by account and event name.
The event stages tables are:

Query 11a

mysql> SHOW TABLES LIKE 'events_stages_%';
+--+
| Tables_in_performance_schema (events_stages_%) |
+--+
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_thread_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_stages_summary_global_by_event_name |
+--+
8 rows in set (0.00 sec)

The event statements tables are:
Query 11b

The event waits tables are:
Query 11c

mysql> SHOW TABLES LIKE 'events_statements_%';
+--+
| Tables_in_performance_schema (events_statements_%) |
+--+
| events_statements_current |
| events_statements_history |
| events_statements_history_long |
| events_statements_summary_by_account_by_event_name |
| events_statements_summary_by_digest |
| events_statements_summary_by_host_by_event_name |
| events_statements_summary_by_thread_by_event_name |
| events_statements_summary_by_user_by_event_name |
| events_statements_summary_global_by_event_name |
+--+
9 rows in set (0.00 sec)

mysql> SHOW TABLES LIKE 'events_waits_%';
+---+
| Tables_in_performance_schema (events_waits_%) |
+---+
| events_waits_current |
| events_waits_history |
| events_waits_history_long |
| events_waits_summary_by_account_by_event_name |
| events_waits_summary_by_host_by_event_name |
| events_waits_summary_by_instance |
| events_waits_summary_by_thread_by_event_name |
| events_waits_summary_by_user_by_event_name |
| events_waits_summary_global_by_event_name |
+---+
9 rows in set (0.02 sec)

Other Summary Tables
In addition to the event summary tables above, there are also a few other summary tables:

• For objects (effectively per table)

• For files

• For table I/O and Lock Wait

• For sockets

Connection Tables
There are tables showing the current and total number of connections per user, host, or account
(user@host). For example for accounts:

Query 12

This shows another aspect of the Performance Schema: note the row having both USER and
HOST set to NULL. That is for the background threads, so not only can the Performance Schema
give information about the client connections (foreground threads), it can also give insight into
what the internal threads such as the InnoDB threads are doing.

mysql> SELECT * FROM accounts;
+------+-----------+---------------------+-------------------+
| USER | HOST | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |
+------+-----------+---------------------+-------------------+
| NULL | NULL | 18 | 20 |
| root | localhost | 2 | 3 |
+------+-----------+---------------------+-------------------+
2 rows in set (0.01 sec)

mailto:user@host

Connection Attribute Tables
Related to the connection tables are the two tables giving access to connection attributes:

• session_account_connect_attrs
• session_connect_attrs

Query 13a

The difference between the two tables is that session_connect_attrs includes the all
connections whereas session_account_connect_attrs only includes the connections for
the same account as the current user. That is you can get the content of
session_account_connect_attrs from session_connect_attrs using the following
query:

Query 13b

mysql> SELECT * FROM session_connect_attrs;
+----------------+-----------------+------------+------------------+
| PROCESSLIST_ID | ATTR_NAME | ATTR_VALUE | ORDINAL_POSITION |
+----------------+-----------------+------------+------------------+
1	_os	linux2.6	0
1	_client_name	libmysql	1
1	_pid	4671	2
1	_client_version	5.6.6-m9	3
1	_platform	x86_64	4
1	program_name	mysql	5
+----------------+-----------------+------------+------------------+
6 rows in set (0.00 sec)

SELECT a.*
 FROM session_connect_attrs a
 INNER JOIN threads t USING (PROCESSLIST_ID)
 WHERE t.PROCESSLIST_USER = SUBSTRING_INDEX(USER(), '@', 1)
 AND t.PROCESSLIST_HOST = SUBSTRING_INDEX(USER(), '@', -1);

Threads
The threads table is one of the most central tables in the Performance Schema. The
THREAD_ID is for example a “key” for all of the non-summary event tables.

This example below includes both a background thread (THREAD_ID = 17) and a foreground
thread (THREAD_ID = 21).

Background threads are the ones created by MySQL to handle the internal server activity – in this
case it is the master InnoDB thread.
Foreground threads are client connections where PROCESSLIST_ID is the same as the Id
displayed by SHOW PROCESSLIST. The active connection’s processlist id can be found using the
CONNECTION_ID() function.

The INSTRUMENTED column tells whether the thread is being instrumented. This column is
updatable, so for a given thread, instrumentation can be enabled and disabled on demand.

Query 14

mysql> SELECT * FROM threads WHERE NAME = 'thread/innodb/srv_master_thread'
OR PROCESSLIST_ID = CONNECTION_ID()\G
*************************** 1. row ***************************
 THREAD_ID: 17
 NAME: thread/innodb/srv_master_thread
 TYPE: BACKGROUND
 PROCESSLIST_ID: NULL
 PROCESSLIST_USER: NULL
 PROCESSLIST_HOST: NULL
 PROCESSLIST_DB: NULL
PROCESSLIST_COMMAND: NULL
 PROCESSLIST_TIME: NULL
 PROCESSLIST_STATE: NULL
 PROCESSLIST_INFO: NULL
 PARENT_THREAD_ID: NULL
 ROLE: NULL
 INSTRUMENTED: YES
*************************** 2. row ***************************
 THREAD_ID: 20
 NAME: thread/sql/one_connection
 TYPE: FOREGROUND
 PROCESSLIST_ID: 1
 PROCESSLIST_USER: root
 PROCESSLIST_HOST: localhost
 PROCESSLIST_DB: performance_schema
PROCESSLIST_COMMAND: Query
 PROCESSLIST_TIME: 0
 PROCESSLIST_STATE: Sending data
 PROCESSLIST_INFO: SELECT * FROM threads WHERE NAME =
'thread/innodb/srv_master_thread' OR PROCESSLIST_ID = CONNECTION_ID()
 PARENT_THREAD_ID: 1
 ROLE: NULL
 INSTRUMENTED: YES
2 rows in set (0.03 sec)

Overview of the Relation Between Tables
The following diagram shows how the Performance Schema tables relate to each other.

Using the Performance Schema
The following will show some examples of how the Performance Schema can be used:

• Replacing SHOW PROCESSLIST.

• Replacing the slow query log.

• Investigating a slow query.

• Investigating a general high server load.

SHOW PROCESSLIST
As the output above from the threads table showed, there are a number of columns where the
name starts with PROCESSLIST_. Each of these corresponds to a field in the output of SHOW
PROCESSLIST. So recreating the output of SHOW PROCESSLIST is straight forward:

Query 15a

mysql> SELECT PROCESSLIST_ID AS Id, PROCESSLIST_USER AS User,
 -> PROCESSLIST_HOST AS Host, PROCESSLIST_DB AS db,
 -> PROCESSLIST_COMMAND AS Command,PROCESSLIST_TIME AS Time,
 -> PROCESSLIST_State AS State,
 -> LEFT(PROCESSLIST_INFO, 100) AS Info
 -> FROM threads t
 -> WHERE TYPE = 'FOREGROUND'\G
*************************** 1. row ***************************
 Id: 1
 User: root
 Host: localhost
 db: performance_schema
Command: Query
 Time: 0
 State: Sending data
 Info: SELECT PROCESSLIST_ID AS Id, PROCESSLIST_USER AS User,
 PROCESSLIST_HOST AS Host, PROCESSLIST_
1 row in set (0.01 sec)

So why use the Performance Schema – after all it is much longer to type than just typing SHOW
PROCESSLIST? There are some good reasons to make the change:

• SHOW PROCESSLIST requires several mutexes including some that affects all the
connections. So if you are fetching the processlist often, it can affect performance.

• Querying the threads table doesn’t take any locks and mutexes other than would be
needed for other queries.

• The threads table also include information about background threads.

• It is possible to join on other Performance Schema tables to get additional information.

• It is possible to configure which threads are instrumented.

So lets create a view that can be used to get the process list with more information about the
processes:

Query 15b
CREATE OR REPLACE SQL SECURITY INVOKER VIEW mysqlconnect.processlist AS
SELECT t.PROCESSLIST_ID AS Id, t.PROCESSLIST_USER AS User, t.PROCESSLIST_HOST AS Host,
 t.PROCESSLIST_DB AS db, t.PROCESSLIST_COMMAND AS Command,
 t.PROCESSLIST_TIME AS Time, ps_helper.format_time(SUM(SUM_TIMER_WAIT)) AS TotalExecTime,
 IF(t.PROCESSLIST_INFO IS NULL, '', t.PROCESSLIST_STATE) AS State,
 IF(s.TIMER_END IS NULL, 'YES', 'NO') AS IsExecuting,
 SUM(ste.COUNT_STAR) AS TotalStatements,
 s.ERRORS, SUM(ste.SUM_ERRORS) AS TotalErrors,
 s.WARNINGS, SUM(ste.SUM_WARNINGS) AS TotalWarnings,
 s.ROWS_AFFECTED, SUM(ste.SUM_ROWS_AFFECTED) AS TotalRowsAffected,
 s.ROWS_SENT, SUM(ste.SUM_ROWS_SENT) AS TotalRowsSent,
 s.ROWS_EXAMINED, SUM(ste.SUM_ROWS_EXAMINED) AS TotalRowsExamnied,
 s.CREATED_TMP_DISK_TABLES, SUM(ste.SUM_CREATED_TMP_DISK_TABLES) AS TotalTmpDiskTables,
 s.CREATED_TMP_TABLES, SUM(ste.SUM_CREATED_TMP_TABLES) AS TotalTmpTables,
 s.SELECT_FULL_JOIN, SUM(ste.SUM_SELECT_FULL_JOIN) AS TotalFullJoin,
 s.SELECT_FULL_RANGE_JOIN, SUM(ste.SUM_SELECT_FULL_RANGE_JOIN) AS TotalFullRangeJoin,
 s.SELECT_RANGE, SUM(ste.SUM_SELECT_RANGE) AS TotalRange,
 s.SELECT_RANGE_CHECK, SUM(ste.SUM_SELECT_RANGE_CHECK) AS TotalRangeCheck,
 s.SELECT_SCAN, SUM(ste.SUM_SELECT_SCAN) AS TotalScan,
 s.SORT_MERGE_PASSES, SUM(ste.SUM_SORT_MERGE_PASSES) AS TotalSortMergePasses,
 s.SORT_RANGE, SUM(ste.SUM_SORT_RANGE) AS TotalSortRange,
 s.SORT_ROWS, SUM(ste.SUM_SORT_ROWS) AS TotalSortRows,
 s.SORT_SCAN, SUM(ste.SUM_SORT_SCAN) AS TotalSortScan,
 s.NO_INDEX_USED, SUM(ste.SUM_NO_INDEX_USED) AS TotalNoIndex,
 s.NO_GOOD_INDEX_USED, SUM(ste.SUM_NO_GOOD_INDEX_USED) AS TotalNoGoodIndex,
 LEFT(s.SQL_TEXT, 100) AS Info
 FROM performance_schema.threads t
 INNER JOIN performance_schema.events_statements_current s USING (THREAD_ID)
 INNER JOIN performance_schema.events_statements_summary_by_thread_by_event_name ste
 USING (THREAD_ID)
 WHERE t.TYPE = 'FOREGROUND'
 GROUP BY THREAD_ID;

Using the new mysqlconnect.processlist view gives:

Query 15c
mysql> SELECT * FROM mysqlconnect.processlist\G
*************************** 1. row ***************************
 Id: 1
 User: root
 Host: localhost
 db: performance_schema
 Command: Query
 Time: 0
 TotalExecTime: 51.81 ms
 State: Sending data
 IsExecuting: YES
 TotalStatements: 55
 ERRORS: 0
 TotalErrors: 0
 WARNINGS: 0
 TotalWarnings: 0
 ROWS_AFFECTED: 0
 TotalRowsAffected: 0
 ROWS_SENT: 0
 TotalRowsSent: 68
 ROWS_EXAMINED: 0
 TotalRowsExamined: 68
CREATED_TMP_DISK_TABLES: 0
 TotalTmpDiskTables: 0
 CREATED_TMP_TABLES: 2
 TotalTmpTables: 2
 SELECT_FULL_JOIN: 2
 TotalFullJoin: 0
 SELECT_FULL_RANGE_JOIN: 0
 TotalFullRangeJoin: 0
 SELECT_RANGE: 0
 TotalRange: 0
 SELECT_RANGE_CHECK: 0
 TotalRangeCheck: 0
 SELECT_SCAN: 2
 TotalScan: 3
 SORT_MERGE_PASSES: 0
 TotalSortMergePasses: 0
 SORT_RANGE: 0
 TotalSortRange: 0
 SORT_ROWS: 0
 TotalSortRows: 0
 SORT_SCAN: 0
 TotalSortScan: 0
 NO_INDEX_USED: 1
 TotalNoIndex: 3
 NO_GOOD_INDEX_USED: 0
 TotalNoGoodIndex: 0
 Info: SELECT * FROM mysqlconnect.processlist
1 row in set (0.15 sec)

Some notes about the view:

• The events_statements_* tables are used to get more information about the
connections and queries.

• There will be a statement for each connected thread in events_statements_current
irrespectively of whether the connection is currently executing a query or sleeping. If the
connection is sleeping, the last completed query is listed.

• The events_statements_summary_by_thread_by_event_name is used to get
historical data for the connections. Note that only statistics for completed queries are
included in this table, so the Total* columns does not include a currently executing
query.

• The IsExecuting column has been added to tell whether the query is currently
executing. As the TIMER_END column in events_statements_current is populated when a
query finished execution, so whether TIMER_END is NULL can be used for this purpose.

• To display the total execution time of completed queries in a human readable format, the
format_time() function from ps_helper (http://www.markleith.co.uk/ps_helper/) is
used.

• We use PROCESSLIST_TIME instead of TIMER_WAIT even though the latter is in
picoseconds (trillionths of a second - or 10-12 seconds) as TIMER_WAIT is not filled in until
the statement has finished executing. So TIMER_WAIT is only useful for completed
statements, and the function to obtain the current time is not exposed at the SQL layer.

The Slow Query Log
Continuing from the process list, we can also use the Performance Schema to recreate the slow
query log. Take the example:

Query 16a

mysql> SET SESSION long_query_time = 1;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT SLEEP(2);
+----------+
| SLEEP(2) |
+----------+
| 0 |
+----------+
1 row in set (2.01 sec)

http://www.markleith.co.uk/ps_helper/

The above gives an entry in the slow query log like:

To recreate this entry using the Performance Schema, you can use a query like:
Query 16b

Time: 120923 13:48:40
User@Host: root[root] @ localhost [] Id: 14
Query_time: 2.031227 Lock_time: 0.000000 Rows_sent: 1 Rows_examined: 0
use performance_schema;
SET timestamp=1348372120;
SELECT SLEEP(2);

mysql> SET @SERVER_START = NOW() - INTERVAL (SELECT VARIABLE_VALUE FROM
information_schema.GLOBAL_STATUS WHERE VARIABLE_NAME = 'Uptime') SECOND;

mysql> SELECT CONCAT('# Time: ', DATE_FORMAT(@SERVER_START + INTERVAL
(TIMER_END/1000000000000) SECOND, '%y%m%d %H:%i:%s'),'
User@Host: ps @ localhost [] Id: ', THREAD_ID, '
Query_time: ', ROUND(TIMER_WAIT/1000000000000, 6), ' Lock_time: ',
ROUND(LOCK_TIME/1000000000000, 6), ' Rows_sent: ', ROWS_SENT, '
Rows_examined: ', ROWS_EXAMINED, '
use ', CURRENT_SCHEMA, ';
SET timestamp=', IFNULL(ROUND(UNIX_TIMESTAMP(@SERVER_START + INTERVAL
(TIMER_END/1000000000000) SECOND), 0), 'NULL'), ';
', SQL_TEXT, ';') AS 'SlowQueryLogEvent'
 FROM `performance_schema`.`events_statements_history_long`
 WHERE TIMER_WAIT > @@session.long_query_time*1000000000000
 AND SQL_TEXT IS NOT NULL
 ORDER BY TIMER_END DESC
 LIMIT 1;
+---+
| SlowQueryLogEvent |
+---+
| # Time: 120927 01:52:05
User@Host: ps @ localhost [] Id: 20
Query_time: 2.025005 Lock_time: 0.000000 Rows_sent: 1 Rows_examined: 0
use performance_schema;
SET timestamp=1348674726;
SELECT SLEEP(2); |
+---+
1 row in set (0.01 sec)

Or use the slow_query_log procedure in the ps_tools database. This procedure takes
two arguments: the threshold for including queries (equivalent to long_query_time) and the
earliest time to consider (use NULL to include all history):

Notes about the query:

• The user has been set to ps@localhost as the actual account is only known while the
connection is still connected. We could try to see whether the THREAD_ID still exists in the
threads table and use the information if available.

• Likewise the process list id is not in general known, so here it has been replaced by the
thread id.

• The time of the query will only be approximate as the TIMER_START and TIMER_END
values may drift compared to the server start. See also
https://dev.mysql.com/doc/refman/5.6/en/performance-schema-timing.html

• You can also add more information about the query such as number of internal temporary
tables, however note that the mysqldumpslow script does not handle extra comments
line.

• It would make sense to create a stored procedure which can be called from the command
line if you intend to use this query.

Instead of recreating the slow query log entries and pass it through mysqldumpslow, we can
take it a step further and do something similar directly from inside MySQL. For this we will use the
statements_with_runtimes_in_95th_percentile view in ps_helper.

The view uses the events_statements_summary_by_digest table to find the most
expensive queries based on run time.

shell# mysql -BN --raw -e "CALL ps_tools.slow_query_log(1, NULL)"
/usr/sbin/mysqld, Version: 5.6.6-m9-log (MySQL Community Server (GPL)).
started with:
Tcp port: 3306 Unix socket: /usr/lib/mysql/mysql.sock
Time Id Command Argument
Time: 120928 16:40:21
User@Host: root @ localhost [] Id: 2
Query_time: 2.013918 Lock_time: 0.000000 Rows_sent: 1 Rows_examined: 0
use performance_schema;
SET timestamp=1348814421;
SELECT SLEEP(2);

https://dev.mysql.com/doc/refman/5.6/en/performance-schema-timing.html
mailto:ps@localhost

Query 16c

If you look at the first query (SELECT SLEEP (?)) you will notice that the argument to SLEEP()
has been replaced with a question mark. The events_statements_summary_by_digest
table is grouping by the query digest rather than the actual query. The digest is based on a
normalised version of the query which allows similar queries to be considered the same. Using
the digest is in general more useful than specific for determining the types of queries that are
slow. The mysqldumpslow script does a similar normalisation when aggregating the slow query
log.

mysql> SELECT * from ps_helper.statements_with_runtimes_in_95th_percentile\G
*************************** 1. row ***************************
 query: SELECT SLEEP (?)
 full_scan:
 exec_count: 1
 err_count: 0
 warn_count: 0
total_latency: 2.03 s
 max_latency: 2.03 s
 avg_latency: 2.03 s
 rows_sent: 1
rows_sent_avg: 1
 rows_scanned: 0
 digest: ea1906ef8f864f6dfa5a2c8a3f25477c
*************************** 2. row ***************************
 query: SELECT * FROM mysqlconnect . processlist
 full_scan: *
 exec_count: 1
 err_count: 0
 warn_count: 0
total_latency: 152.39 ms
 max_latency: 152.39 ms
 avg_latency: 152.39 ms
 rows_sent: 1
rows_sent_avg: 1
 rows_scanned: 22
 digest: 799cec2d5c9cbca2ca1ff3fae3b698de
2 rows in set (0.05 sec)

To see how this work, let us look at an example:
Query 16d

The events_statements_history table has a row for each of the three queries, but the DIGEST and
DIGEST_TEXT is the same for the two queries against the world.Country table.

mysql> TRUNCATE events_statements_history;
Query OK, 0 rows affected (0.00 sec)

mysql> TRUNCATE events_statements_summary_by_digest;
Query OK, 0 rows affected (0.03 sec)

mysql> SELECT Code, Name FROM world.Country WHERE Code = 'AUS';
+------+-----------+
| Code | Name |
+------+-----------+
| AUS | Australia |
+------+-----------+
1 row in set (0.00 sec)

mysql> SELECT Code, Name FROM world.Country WHERE Code = 'USA';
+------+---------------+
| Code | Name |
+------+---------------+
| USA | United States |
+------+---------------+
1 row in set (0.00 sec)

mysql> SELECT DIGEST, DIGEST_TEXT, SQL_TEXT FROM events_statements_history\G
*************************** 1. row ***************************
 DIGEST: 0a918f84e9308d683a431f41d2dada4c
DIGEST_TEXT: TRUNCATE `events_statements_history`
 SQL_TEXT: TRUNCATE events_statements_history
*************************** 2. row ***************************
 DIGEST: 6b90709ef8b40f1aead03e5a7a3e2cf9
DIGEST_TEXT: TRUNCATE `events_statements_summary_by_digest`
 SQL_TEXT: TRUNCATE events_statements_summary_by_digest
*************************** 3. row ***************************
 DIGEST: dedcd88c723e7b04e925975f78b8ae73
DIGEST_TEXT: SELECT CODE , NAME FROM `world` . `Country` WHERE CODE = ?
 SQL_TEXT: SELECT Code, Name FROM world.Country WHERE Code = 'AUS'
*************************** 4. row ***************************
 DIGEST: dedcd88c723e7b04e925975f78b8ae73
DIGEST_TEXT: SELECT CODE , NAME FROM `world` . `Country` WHERE CODE = ?
 SQL_TEXT: SELECT Code, Name FROM world.Country WHERE Code = 'USA'
4 rows in set (0.14 sec)

DIGEST_TEXT is the normalised query and DIGEST is the md5 sum of the normalised query;
both can be found in all of the events_statements_current,
events_statements_history, and events_statements_history_long tables, and
the DIGEST is used for summarising the statements in the
events_statements_summary_by_digest table as used in the
statements_with_runtimes_in_95th_percentile view.

Query 16e

Investigating a Slow Query
Let us run a slow query and see what kind of information is available from the Performance
Schema.
First find the THREAD_ID of the thread running the query and truncate the
events_statements_history table.

Query 17a

mysql> SELECT DIGEST, DIGEST_TEXT, COUNT_STAR
 -> FROM events_statements_summary_by_digest
 -> WHERE DIGEST_TEXT LIKE '%world%'\G
*************************** 1. row ***************************
 DIGEST: dedcd88c723e7b04e925975f78b8ae73
DIGEST_TEXT: SELECT CODE , NAME FROM `world` . `Country` WHERE CODE = ?
 COUNT_STAR: 2
1 row in set (0.11 sec)

mysql> SELECT THREAD_ID FROM threads WHERE PROCESSLIST_ID = CONNECTION_ID();
+-----------+
| THREAD_ID |
+-----------+
| 23 |
+-----------+
1 row in set (0.00 sec)

mysql> use sakila
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> TRUNCATE performance_schema.events_statements_history;
Query OK, 0 rows affected (0.01 sec)

The query we will be investigating is:
Query 17b

We can now start the investigation by looking at the query in the
events_statements_history table:

Query 17c

We can already see a few potential problems:

• A seemingly simple query is creating 3 internal temporary tables of which 2 are created on
disk.

• It does 2 SELECT_SCANs, so furthermore a clear indication that it is not a simple table (but
rather a view).

• 24861 rows are examined to return 997 rows – can we improve that?

mysql> SELECT FID, title, LEFT(actors, 20) FROM nicer_but_slower_film_list;
+------+-----------------------------+----------------------+
| FID | title | LEFT(actors, 20) |
+------+-----------------------------+----------------------+
| 1 | ACADEMY DINOSAUR | Penelope Guiness, Ch |
…
| 1000 | ZORRO ARK | Ian Tandy, Nick Dege |
+------+-----------------------------+----------------------+
997 rows in set (0.41 sec)

mysql> SELECT ps_helper.format_time(TIMER_WAIT) AS TIMER_WAIT,
 -> ROWS_SENT, ROWS_EXAMINED,
 -> CREATED_TMP_DISK_TABLES AS TMP_DISK_TABLES,
 -> CREATED_TMP_TABLES AS TMP_TABLES, SELECT_SCAN
 -> FROM performance_schema.events_statements_history
 -> WHERE THREAD_ID = 23 AND ROWS_SENT > 100
 -> ORDER BY TIMER_START;
+------------+-----------+---------------+-----------------+------------+-------------+
| TIMER_WAIT | ROWS_SENT | ROWS_EXAMINED | TMP_DISK_TABLES | TMP_TABLES | SELECT_SCAN |
+------------+-----------+---------------+-----------------+------------+-------------+
| 412.02 ms | 997 | 24861 | 2 | 3 | 2 |
+------------+-----------+---------------+-----------------+------------+-------------+
1 row in set (0.02 sec)

Using EXPLAIN on the query gives:

Query 17d
mysql> EXPLAIN SELECT FID, title, LEFT(actors, 20) FROM nicer_but_slower_film_list;
+----+-------------+---------------+--------+...+------+---------------------------------+
| id | select_type | table | type |...| rows | Extra |
+----+-------------+---------------+--------+...+------+---------------------------------+
1	PRIMARY	<derived2>	ALL	...	992	NULL
2	DERIVED	category	ALL	...	16	Using temporary; Using filesort
2	DERIVED	film_category	ref	...	31	Using where; Using index
2	DERIVED	film	eq_ref	...	1	NULL
2	DERIVED	film_actor	ref	...	2	Using index
2	DERIVED	actor	eq_ref	...	1	NULL
+----+-------------+---------------+--------+...+------+---------------------------------+
6 rows in set (0.06 sec)

So indeed it is a view using five tables, and furthermore it’s materialising the view as a temporary
table. The view definition is:

Query 17e

The three internal temporary tables come from:

• The GROUP BY
• Materialisation of the view

• The GROUP_CONCAT

To address this, we can try rewriting the query making the following changes:

• Convert the LEFT JOINs to INNER JOINs (as all the films have a category).

• Force the film table to be the first table through a STRAIGHT_JOIN to ensure the index on
film.film_id can be used for the GROUP BY.

Query 17f

CREATE VIEW nicer_but_slower_film_list
AS
SELECT film.film_id AS FID, film.title AS title, film.description AS description,
 category.name AS category, film.rental_rate AS price, film.length AS length,
 film.rating AS rating, GROUP_CONCAT(CONCAT(CONCAT(UCASE(SUBSTR(actor.first_name,1,1)),
 LCASE(SUBSTR(actor.first_name,2,LENGTH(actor.first_name))),_utf8' ',
 CONCAT(UCASE(SUBSTR(actor.last_name,1,1)),
 LCASE(SUBSTR(actor.last_name,2,LENGTH(actor.last_name)))))) SEPARATOR ', ') AS actors
 FROM category
 LEFT JOIN film_category ON category.category_id = film_category.category_id
 LEFT JOIN film ON film_category.film_id = film.film_id
 JOIN film_actor ON film.film_id = film_actor.film_id
 JOIN actor ON film_actor.actor_id = actor.actor_id
 GROUP BY film.film_id;

CREATE OR REPLACE VIEW nicer_but_slower_film_list2
AS
 SELECT film.film_id AS FID, film.title AS title, film.description AS description,
 category.name AS category, film.rental_rate AS price, film.length AS length,
 film.rating AS rating, GROUP_CONCAT(CONCAT(CONCAT(UCASE(SUBSTR(actor.first_name,1,1)),
 LCASE(SUBSTR(actor.first_name,2,LENGTH(actor.first_name))),_utf8' ',
 CONCAT(UCASE(SUBSTR(actor.last_name,1,1)),
 LCASE(SUBSTR(actor.last_name,2,LENGTH(actor.last_name)))))) SEPARATOR ', ') AS actors
 FROM film
 STRAIGHT_JOIN film_category ON film_category.film_id = film.film_id
 JOIN category ON category.category_id = film_category.category_id
 JOIN film_actor ON film.film_id = film_actor.film_id
 JOIN actor ON film_actor.actor_id = actor.actor_id
 GROUP BY film.film_id;

Running the query again and checking events_statements_history now gives:

Query 17g

So somewhat of an improvement. But what if we avoid the overhead of having to materialise the
view in a temporary table? Lets try to run the SELECT from nicer_but_slower_film_list directly:

Query 17h

Investigating General Server Load
First we will make some changes to the MySQL configuration.

1. Run some queries to generate load

mysql> SELECT ps_helper.format_time(TIMER_WAIT) AS TIMER_WAIT,
 -> ROWS_SENT, ROWS_EXAMINED,
 -> CREATED_TMP_DISK_TABLES AS TMP_DISK_TABLES,
 -> CREATED_TMP_TABLES AS TMP_TABLES, SELECT_SCAN
 -> FROM performance_schema.events_statements_history
 -> WHERE THREAD_ID = 23 AND ROWS_SENT > 100
 -> ORDER BY TIMER_START;
+------------+-----------+---------------+-----------------+------------+-------------+
| TIMER_WAIT | ROWS_SENT | ROWS_EXAMINED | TMP_DISK_TABLES | TMP_TABLES | SELECT_SCAN |
+------------+-----------+---------------+-----------------+------------+-------------+
| 412.02 ms | 997 | 24861 | 2 | 3 | 2 |
| 261.86 ms | 997 | 14921 | 1 | 2 | 2 |
+------------+-----------+---------------+-----------------+------------+-------------+
2 rows in set (0.02 sec)

mysql> SELECT ps_helper.format_time(TIMER_WAIT) AS TIMER_WAIT,
 -> ROWS_SENT, ROWS_EXAMINED,
 -> CREATED_TMP_DISK_TABLES AS TMP_DISK_TABLES,
 -> CREATED_TMP_TABLES AS TMP_TABLES, SELECT_SCAN
 -> FROM performance_schema.events_statements_history
 -> WHERE THREAD_ID = 23 AND ROWS_SENT > 100
 -> ORDER BY TIMER_START;
+------------+-----------+---------------+-----------------+------------+-------------+
| TIMER_WAIT | ROWS_SENT | ROWS_EXAMINED | TMP_DISK_TABLES | TMP_TABLES | SELECT_SCAN |
+------------+-----------+---------------+-----------------+------------+-------------+
412.02 ms	997	24861	2	3	2
261.86 ms	997	14921	1	2	2
186.43 ms	997	13924	0	1	1
+------------+-----------+---------------+-----------------+------------+-------------+
2 rows in set (0.02 sec)

shell# bash /tmp/hol/run_queries.sh

2. Start the investigation
Query 18

Of the events spending most time, some of them we are not interested in here:

• idle: that means something has been doing anything – so it is not putting load on the
server, so not a problem.

• wait/io/socket/sql/client_connection: this is related to creating the
connections.

• wait/io/table/sql/handler: Table I/O events are so called molecular events, i.e.
they include other events.

That leaves the following events as the biggest:

• wait/synch/mutex/buf_pool_mutex
• wait/io/file/innodb/innodb_data_file
• wait/synch/mutex/innodb/lock_space
• wait/io/file/innodb/innodb_log_file

mysql> use performance_schema
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> SELECT EVENT_NAME, COUNT_STAR,
 -> ps_helper.format_time(SUM_TIMER_WAIT) AS SUM_TIMER_WAIT
 -> FROM events_waits_summary_global_by_event_name s
 -> ORDER BY s.SUM_TIMER_WAIT DESC
 -> LIMIT 10;
+---+------------+----------------+
| EVENT_NAME | COUNT_STAR | SUM_TIMER_WAIT |
+---+------------+----------------+
idle	228840	00:19:22.6267
wait/synch/mutex/innodb/buf_pool_mutex	780910	00:07:40.5441
wait/io/socket/sql/client_connection	458138	00:07:14.7444
wait/io/table/sql/handler	1171278	00:05:13.2516
wait/io/file/innodb/innodb_data_file	120084	00:01:02.7647
wait/synch/mutex/innodb/lock_mutex	2763636	00:01:02.3667
wait/io/file/innodb/innodb_log_file	9855	46.82 s
wait/synch/rwlock/innodb/hash table locks	4928397	22.11 s
wait/synch/mutex/mysys/THR_LOCK::mutex	1700455	16.95 s
wait/synch/cond/sql/BINARY_LOG::COND_done	1185	13.33 s
+---+------------+----------------+
10 rows in set (0.01 sec)

The wait/synch/mutex/buf_pool_mutex, wait/io/file/innodb/innodb_data_file,
and wait/io/file/innodb/innodb_log_file are signs of the InnoDB log files and possibly
the buffer pool are too small. Too small log settings cause excessive flushing from the log files
and buffer pool, and when the circular redo log is about to be overwritten, a checkpoint is forced
(uses the data file) so that recovery will not break.
So the first step here would be to increase the size of the InnoDB log files and the InnoDB buffer
pool. Then rerun the test see what the effect is.

Slave Load
One of the important things in a master-slave setup is to monitor the slave to be sure that the
slave keeps up with the master. Traditionally Seconds_Behind_Master from SHOW SLAVE
STATUS has been used for this, but it has its problems, for example it is reactive monitoring.

The Performance Schema allows to proactively monitoring the slave.
First log into the slave:

ps_tools has a stored procedure – compute_slave_load_average – for this:

Query 19a

shell# mysql --socket=/var/lib/mysql_slave/mysql.sock

mysql> use ps_tools;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> CALL compute_slave_load_average();
Query OK, 0 rows affected (0.12 sec)

The procedure updates the ps_tools.slave_sql_load_average table with the slave load
statistics:

Query 19b

In ps_tools an event is run every five seconds calling compute_slave_load_average, but it
could also be done having an external process, such as a monitoring system, run the equivalent
queries.
The way it works is to check how long time the SQL thread () is spending in the
wait/synch/cond/sql/RELAY_LOG::update_cond event out of the whole interval between calling
compute_slave_load_average. The need to work with deltas benefits from the support for
microseconds in timestamps in MySQL 5.6.

mysql> SHOW CREATE TABLE slave_sql_load_average\G
*************************** 1. row ***************************
 Table: slave_sql_load_average
Create Table: CREATE TABLE `slave_sql_load_average` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT,
 `tstamp` timestamp(6) NOT NULL DEFAULT CURRENT_TIMESTAMP(6) ON UPDATE CURRENT_TIMESTAMP(6),
 `idle_avg` varchar(12) DEFAULT NULL,
 `idle_delta_formatted` varchar(12) DEFAULT NULL,
 `busy_pct` decimal(5,2) DEFAULT NULL,
 `one_min_avg` decimal(5,2) DEFAULT NULL,
 `five_min_avg` decimal(5,2) DEFAULT NULL,
 `fifteen_min_avg` decimal(5,2) DEFAULT NULL,
 `idle_sum` bigint(20) DEFAULT NULL,
 `idle_delta` bigint(20) DEFAULT NULL,
 `events_sum` int(11) DEFAULT NULL,
 `events_delta` int(11) DEFAULT NULL,
 `current_wait` varchar(128) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `tstamp` (`tstamp`)
) ENGINE=InnoDB AUTO_INCREMENT=1407 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

To see how the slaved performed during the previous tests:
Query 19c

To use this optimally plot it, so the busy % and averages can be see over time.
Notes:

• This feature is actually also available in MySQL 5.5 (requires a few changes in
compute_slave_load_average and slave_sql_load_average.

• The load averages are simple averages of busy %, so it is not the same as the load
average on Linux.

• If you want to read more about the slave SQL load average, see also
http://www.markleith.co.uk/2012/07/24/a-mysql-replication-load-average-with-performance-
schema/. This page also includes the MySQL 5.5 version of the procedure and table.

Stack Trace
If the events_stages_history_long, events_statements_history_long, and
events_waits_history_long consumers are all enabled, it is possible to create a stack
trace. The ps_helper procedure dump_thread_stack does this.

mysql> SELECT id, DATE_FORMAT(tstamp, '%H:%i:%s') AS tstamp,
 -> idle_delta_formatted AS idle, busy_pct,
 -> one_min_avg AS avg_1, five_min_avg AS avg_5,
 -> fifteen_min_avg as avg_15
 -> FROM slave_sql_load_average s
 -> ORDER BY s.tstamp;
+------+----------+-----------+----------+-------+-------+--------+
| id | tstamp | idle | busy_pct | avg_1 | avg_5 | avg_15 |
+------+----------+-----------+----------+-------+-------+--------+
…
1740	08:58:36	3.64 s	24.38	33.29	7.10	2.41
1741	08:58:41	2.80 s	42.65	33.99	7.80	2.64
1742	08:58:46	1.91 s	60.36	36.98	8.79	2.98
1743	08:58:51	3.25 s	33.61	36.72	9.34	3.17
1744	08:58:56	2.83 s	42.69	37.08	10.04	3.40
1745	08:59:01	2.88 s	39.41	37.26	10.69	3.62
1746	08:59:06	663.44 ms	86.44	42.26	12.11	4.10
1747	08:59:11	4.99 s	0.00	39.36	12.11	4.10
1748	08:59:16	5.00 s	0.00	36.33	12.11	4.10
…

http://www.markleith.co.uk/2012/07/24/a-mysql-replication-load-average-with-performance-schema/
http://www.markleith.co.uk/2012/07/24/a-mysql-replication-load-average-with-performance-schema/

Query 20

Run the dump_thread_stack from the command line (to be able to get the raw output):

mysql> use mysqlconnect
Database changed
mysql> CREATE TABLE t3 (id int unsigned PRIMARY KEY);
Query OK, 0 rows affected (0.38 sec)

mysql> connect
Connection id: 9
Current database: mysqlconnect

mysql> SELECT THREAD_ID FROM performance_schema.threads WHERE PROCESSLIST_ID = CONNECTION_ID();
+-----------+
| THREAD_ID |
+-----------+
| 28 |
+-----------+
1 row in set (0.00 sec)

mysql> INSERT INTO t3 VALUES (1);
Query OK, 1 row affected (0.03 sec)

shell# mysql -BN -e "CALL ps_helper.dump_thread_stack(28, TRUE)" > /tmp/stack.dot
shell# dot -Tpdf /tmp/stack.dot -o /tmp/stack.pdf
shell# evince /tmp/stack.pdf

	Background Information
	To login to the virtual machine:
	Starting and stopping MySQL:
	Running the Tests

	Tour of the MySQL Performance Schema
	Configuration
	Start MySQL
	1. Stop MySQL
	2. Update the MySQL configuration file
	3. Move the existing log files out of the way
	4. Start MySQL
	5. Load Tools
	6. Connect to the master:

	Performance Schema Variables:
	Setup Tables
	setup_actors
	setup_objects
	setup_timers
	setup_instruments
	setup_consumers

	Instance Tables
	Event Tables
	Other Summary Tables
	Connection Tables
	Connection Attribute Tables

	Threads
	Overview of the Relation Between Tables

	Using the Performance Schema
	SHOW PROCESSLIST
	The Slow Query Log
	Investigating a Slow Query
	Investigating General Server Load
	1. Run some queries to generate load
	2. Start the investigation

	Slave Load
	Stack Trace

