

Improving Performance with the MySQL Performance Schema

ORACLE

Conne

Jesper Wisborg Krogh Principal Technical Support Engineer, MySQL

- Tour of the MySQL Performance Schema
- SHOW PROCESSLIST/The slow query log
- Investigating a slow query and high server load
- Monitor Slave Load
- Stack Trace

Getting Started

Log into the laptop:

Username	mysqlconnect
Password	mysqlconnect

Change to the root user

```
shell$ su -1
Password Oracle123
```

Download and unpack files:

```
shell$ cd /tmp
shell$ wget http://mysql.wisborg.dk/connect.tgz
shell$ tar -zxvf connect.tgz
```


Getting Started (continued)

To open manual

shell\$ evince /tmp/hol/workbook.pdf &

To open files with queries

shell\$ gedit /tmp/hol/queries.sql &

Tour of the MySQL Performance Schema

- Located in the performance_schema database
- Several groups of tables:
 - Setup tables
 - Instance tables
 - Event tables
 - Summary tables
 - Etc.

Relationship Between Tables

MySQL. Connect

Relationship Between Tables

SHOW PROCESSLIST

- SHOW PROCESSLIST;
- information_schema.PROCESSLIST table:
 - Essentially the same as SHOW PROCESSLIST;
- performance_schema.threads table:
 - Only mutexes needed are for the query itself; no locking of the listed processes.
 - Can include information about background threads.
 - Can configure which threads to instrument.

Slow Query Log

- Logs queries slower than @@session.long_query_time
- Prints something like the following in the slow query log:

```
# Time: 120923 13:48:40
# User@Host: root[root] @ localhost [] Id: 14
# Query_time: 2.031227 Lock_time: 0.000000 Rows_sent: 1 Rows_examined: 0
use performance_schema;
SET timestamp=1348372120;
SELECT SLEEP(2);
```

ps_tools.slow_query_long(long_query_time, first_datettime) uses the Performance Schema.

Investigating Slow Query

- For simple investigations use the events_statements_* tables.
- For more complex cases also use the events_waits_* tables.

Investigating General Server Load

- We will use the events_waits_summary_global_by_event_name table to get an overview of where the server is spending most time.
- Use an iterative approach by taking care of the worst bottleneck first, then retest.
- The idle event will typically dominate, but is not a contention point.
- Table I/O events is an example of molecular events, and will include the time spent in other (atomic) events.

Monitor the Load of a Slave

- Previously it has been difficult to monitor how close a slave has been to the point where it cannot keep up with the master.
- In MySQL 5.5 and later this is possible using the Performance Schema.
- To look at the load for the SQL thread:
 - MySQL 5.5: use wait/synch/cond/sql/MYSQL_RELAY_LOG::update_cond events.
 - MySQL 5.6 the event is called wait/synch/cond/sql/RELAY_LOG::update_cond event

Monitor the Load of a Slave (continued)

The compute_slave_load_average procedure (by Mark Leith) can be used:
Slave Load Average

Time

Stack Trace

- The information in the events <u>*</u> history long tables can be used to create a stack trace for a thread.
- The dump_thread_stack procedure in ps_helper creates the a DOT formatted graph file.
- This file can be used to create a graphical stack trace.

Stack Trace (continued)

ORACLE

Connect

